Part Number Hot Search : 
NJU7307 RT8243A SLD231VL 80WN0006 HT121K GP30G TED1212 ZSBXXX
Product Description
Full Text Search
 

To Download IR21834STR Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  typical connection half-bridge driver features ? floating channel designed for bootstrap operation fully operational to +600v tolerant to negative transient voltage dv/dt immune ? gate drive supply range from 10 to 20v ? undervoltage lockout for both channels ? 3.3v and 5v input logic compatible ? matched propagation delay for both channels ? logic and power ground +/- 5v offset. ? lower di/dt gate driver for better noise immunity ? output source/sink current capability 1.4a/1.8a ? also available lead-free (pbf) ir21834 ir2183 packages www.irf.com 1 ir2183 ( 4 )( s ) & ( pbf ) data sheet no. pd60173 rev.h (refer to lead assignment for correct pin configuration) this/these diagram(s) show electrical connections only. please refer to our application notes and designtips for proper circuit board layout. 14-lead pdip ir21834 14-lead soic ir21834s description the ir2183(4)(s) are high voltage, high speed power mosfet and igbt drivers with dependent high and low side referenced output channels. pro- prietary hvic and latch immune cmos technologies enable rugge- dized monolithic construction. the logic input is compatible with standard cmos or lsttl output, down to 3.3v logic. the output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. the floating channel can be used to drive an n-channel power mosfet or igbt in the high side configuration which operates up to 600 volts. ir2181/ir2183/ir2184 feature comparison 8-lead pdip ir2183 8-lead soic ir2183s
ir2183 ( 4 )( s ) & ( pbf ) 2 www.irf.com symbol definition min. max. units v b high side floating absolute voltage -0.3 625 v s high side floating supply offset voltage v b - 25 v b + 0.3 v ho high side floating output voltage v s - 0.3 v b + 0.3 v cc low side and logic fixed supply voltage -0.3 25 v lo low side output voltage -0.3 v cc + 0.3 dt programmable dead-time pin voltage (ir21834 only) v ss - 0.3 v cc + 0.3 v in logic input voltage (hin & )v ss - 0.3 v ss + 10 v ss logic ground (ir21834 only) v cc - 25 v cc + 0.3 dv s /dt allowable offset supply voltage transient 50 v/ns p d package power dissipation @ t a +25 c (8-lead pdip) 1.0 (8-lead soic) 0.625 (14-lead pdip) 1.6 (14-lead soic) 1.0 rth ja thermal resistance, junction to ambient (8-l ead pdip) 125 (8-lead soic) 200 (14-lead pdip) 75 (14-lead soic) 120 t j junction temperature 150 t s storage temperature -50 150 t l lead temperature (soldering, 10 seconds) 300 v c c/w w absolute maximum ratings absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. all voltage param- eters are absolute voltages referenced to com. the thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. recommended operating conditions the input/output logic timing diagram is shown in figure 1. for proper operation the device should be used within the recommended conditions. the v s and v ss offset rating are tested with all supplies biased at 15v differential. note 1: logic operational for v s of -5 to +600v. logic state held for v s of -5v to -v bs . (please refer to the design tip dt97-3 for more details). note 2: hin and lin pins are internally clamped with a 5.2v zener diode. vb high side floating supply absolute voltage v s + 10 v s + 20 v s high side floating supply offset voltage note 1 600 v ho high side floating output voltage v s v b v cc low side and logic fixed supply voltage 10 20 v lo low side output voltage 0 v cc v in logic input voltage (hin & )v ss v ss + 5 dt programmable dead-time pin voltage (ir21834 only) v ss v cc v ss logic ground (ir21834 only) -5 5 t a ambient temperature -40 125 c v symbol definition min. max. units
ir2183(4 )( s ) & ( pbf ) www.irf.com 3 static electrical characteristics v bias (v cc , v bs ) = 15v, v ss = com, dt= v ss and t a = 25 c unless otherwise specified. the v il , v ih and i in parameters are referenced to v ss /com and are applicable to the respective input leads: hin and lin. the v o , i o and ron parameters are referenced to com and are applicable to the respective output leads: ho and lo. symbol definition min. t yp. max. units test conditions v ih logic 1 input voltage for hin & logic 0 for 2.7 v cc = 10v to 20v v il logic 0 input voltage for hin & logic 1 for 0.8 v cc = 10v to 20v v oh high level output voltage, v bias - v o 1.2 i o = 0a v ol low level output voltage, v o 0.1 i o = 0a i lk offset supply leakage current 50 v b = v s = 600v i qbs quiescent v bs supply current 20 60 150 v in = 0v or 5v i qcc quiescent v cc supply current 0.4 1.0 1.6 ma v in = 0v or 5v i in+ logic 1 input bias current 25 60 hin = 5v, = 0v i in- logic 0 input bias current 1.0 hin = 0v, = 5v v ccuv+ v cc and v bs supply undervoltage positive going 8.0 8.9 9.8 v bsuv+ threshold v ccuv- v cc and v bs supply undervoltage negative going 7.4 8.2 9.0 v bsuv- threshold v ccuvh hysteresis 0.3 0.7 v bsuvh i o+ output high short circuit pulsed current 1.4 1.9 v o = 0v, pw 10 s i o- output low short circuit pulsed current 1.8 2.3 v o = 15v, pw 10 s v a a v a dynamic electrical characteristics v bias (v cc , v bs ) = 15v, v ss = com, c l = 1000 pf, t a = 25 c, dt = vss unless otherwise specified. symbol definition min. typ. max. units test conditions t on turn-on propagation delay 180 270 v s = 0v t off turn-off propagation delay 220 330 v s = 0v or 600v mt delay matching | t on - t off | 0 35 t r turn-on rise time 40 60 v s = 0v t f turn-off fall time 20 35 v s = 0v dt deadtime: lo turn-off to ho turn-on(dt lo-ho) & 280 400 520 rdt= 0 ho turn-off to lo turn-on (dt ho-lo) 456 sec rdt = 200k (ir21834) mdt deadtime matching = | dt lo-ho - dt ho-lo | 0 50 rdt=0 0 600 rdt = 200k (ir21834) nsec nsec
ir2183 ( 4 )( s ) & ( pbf ) 4 www.irf.com functional block diagrams 2183 lin +5v uv detect delay com lo vcc hin dt vss vs ho vb pulse filter hv level shifter r r s q uv detect deadtime & shoot-through prevention pulse generator vss/com level shift vss/com level shift 21834 lin uv detect delay hin dt vss vs ho vb pulse filter hv level shifter r r s q uv detect deadtime & shoot-through prevention pulse generator vss/com level shift vss/com level shift +5v com lo vcc
ir2183(4 )( s ) & ( pbf ) www.irf.com 5 14-lead pdip 14-lead soic ir21834 ir21834s lead assignments 8-lead pdip 8-lead soic lead definitions symbol description hin logic input for high side gate driver output (ho), in phase (referenced to com for ir2183 and vss for ir21834) logic input for low side gate driver output (lo), out of phase (referenced to com for ir2183 and vss for ir21834) dt programmable dead-time lead, referenced to vss. (ir21834 only) vss logic ground (21834 only) v b high side floating supply ho high side gate driver output v s high side floating supply return v cc low side and logic fixed supply lo low side gate driver output com low side return ir2183 ir2183s 1 2 3 4 8 7 6 5 hin lin com lo v b ho v s v cc 1 2 3 4 8 7 6 5 hin lin com lo v b ho v s v cc 1 2 3 4 5 6 7 1 4 13 12 11 10 9 8 hin lin vss dt com lo v cc v b ho v s 1 2 3 4 5 6 7 1 4 13 12 11 10 9 8 hin lin vss dt com lo v cc v b ho v s
ir2183 ( 4 )( s ) & ( pbf ) 6 www.irf.com figure 1. input/output timing diagram figure 3. deadtime waveform definitions figure 2. switching time waveform definitions
ir2183(4 )( s ) & ( pbf ) www.irf.com 7 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on propagation delay (ns) typ. max. figure 4a. turn-on propagation delay vs. temperature 0 100 200 300 400 500 10 12 14 16 18 20 supply voltage (v) turn-on propagation delay (ns) figure 4b. turn-on propagation delay vs. supply voltage typ. max. 100 200 300 400 500 600 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off propagation delay (ns) typ. max. figure 5a. turn-off propagation delay vs. temperature 0 100 200 300 400 500 600 10 12 14 16 18 20 supply voltage (v) turn-off propagation delay (ns) figure 5b. turn-off propagation delay vs. supply voltage typ. max.
ir2183 ( 4 )( s ) & ( pbf ) 8 www.irf.com 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-on rise time (ns) typ. max. figure 6a. turn-on rise time vs. temperature 0 20 40 60 80 100 120 10 12 14 16 18 20 supply voltage (v) turn-on rise time (ns) figure 6b. turn-on rise time vs. supply voltage typ. max. 0 20 40 60 80 -50 -25 0 25 50 75 100 125 temperature ( o c) turn-off fall time (ns) typ max. figure 7a. turn-off fall time vs. temperature 0 20 40 60 80 10 12 14 16 18 20 supply voltage (v) turn-off fall time (ns) figure 7b. turn-off fall time vs. supply voltage typ. max.
ir2183(4 )( s ) & ( pbf ) www.irf.com 9 100 300 500 700 900 1100 -50 -25 0 25 50 75 100 125 temperature ( o c) deadtime (ns) mi n. figure 8a. deadtime vs. temperature typ. max. 100 300 500 700 900 1100 10 12 14 16 18 20 supply voltage (v) deaduime (ns) figure 8b. deadtime vs. supply voltage typ. max. mi n. 0 1 2 3 4 5 6 7 0 50 100 150 200 r dt (k ) deadtime ( s) figure 8c. deadtime vs. r dt typ. max. mi n. 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input voltage (v) mi n. figure 9a. logic "1" input voltage vs. temperature
ir2183 ( 4 )( s ) & ( pbf ) 10 www.irf.com 0 1 2 3 4 5 6 10 12 14 16 18 20 supply voltage (v) logic "1" input voltage (v) figure 9b. logic "1" input voltage vs. supply voltage mi n. 0 1 2 3 4 5 6 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "0" input voltage (v) max. figure 10a. logic "0" input voltage vs. temperature 0 1 2 3 4 5 6 10 12 14 16 18 20 supply voltage (v) logic "0" input voltage (v) figure 10b. logic "0" input voltage vs. supply voltage max. 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) high level output (v) max. figure 11a. high level output vs. temperature
ir2183(4 )( s ) & ( pbf ) www.irf.com 11 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) high level output (v) figure 11b. high level output vs. supply voltage max. 0.0 0.1 0.2 0.3 0.4 0.5 -50 -25 0 25 50 75 100 125 temperature ( o c) low level output (v) max. figure 12a. low level output vs. temperature 0.0 0.1 0.2 0.3 0.4 0.5 10 12 14 16 18 20 supply voltage (v) low level output (v) figure 12b. low level output vs. supply voltage max. 0 100 200 300 400 500 -50 -25 0 25 50 75 100 125 temperature ( o c) offset supply leakage current ( a) max. figure 13a. offset supply leakage current vs. temperature
ir2183 ( 4 )( s ) & ( pbf ) 12 www.irf.com 0 100 200 300 400 500 100 200 300 400 500 600 v b boost voltage (v) offset supply leakage current ( a) figure 13b. offset supply leakage current vs. v b boo s t v o lt ag e max. 0 50 100 150 200 250 -50 -25 0 25 50 75 100 125 temperature ( o c) v bs supply current ( a) mi n. figur e 14a. v bs supply current vs. temperature typ. max. 0 50 100 150 200 250 10 12 14 16 18 20 v bs floating supply voltage (v) v bs supply current ( a) figure 14b. v bs supply current vs. v bs floating supply voltage typ. max. mi n. 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc supply current (ma ) min. fig ur e 15a. v cc supply current vs . tem perature typ. m ax.
ir2183(4 )( s ) & ( pbf ) www.irf.com 13 0 1 2 3 4 5 10 12 14 16 18 20 v cc supply voltage (v) v cc supply current (ma ) figure 15b. v cc supply current vs . v cc supply voltage 0 20 40 60 80 100 120 -50 -25 0 25 50 75 100 125 temperature ( o c) logic "1" input bias current ( a) figure 16a. logic "1" input bias current vs. temperature typ. max. 0 20 40 60 80 100 120 10 12 14 16 18 20 supply voltage (v) logic "1" input bias current ( a) figure 16b. logic "1" input bias current vs. supply voltage typ. max. 0 1 2 3 4 5 -50-25 0 25 50 75100125 temperature ( o c) logic "0" input bias current ( a) max. figure 17a. logic "0" input bias current vs. temperature
ir2183 ( 4 )( s ) & ( pbf ) 14 www.irf.com 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) logic "0" input bias current ( a) figure 17b. logic "0" input bias current vs. supply voltage max. 6 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc and v bs uv threshold (+) (v) mi n. figur e 18. v cc and v bs undervoltage threshold (+) vs. temperature typ. max. 6 7 8 9 10 11 12 -50 -25 0 25 50 75 100 125 temperature ( o c) v cc and v bs uvthreshold (-) (v) mi n. figure 19. v cc and v bs undervoltage threshold (-) vs. temperature typ. max. 0 1 2 3 4 5 -50 -25 0 25 50 75 100 125 temperature ( o c) output source current (a) mi n. figure 20a. output source current vs. temperature typ.
ir2183(4 )( s ) & ( pbf ) www.irf.com 15 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) output source current (a) figure 20b. output source current vs. supply voltage typ. mi n. 1.0 2.0 3.0 4.0 5.0 -50 -25 0 25 50 75 100 125 temperature ( o c) output sink current (a) mi n. figure 21a. output sink current vs. temperature typ. 0 1 2 3 4 5 10 12 14 16 18 20 supply voltage (v) output sink current (a) figure 21b. output sink current vs. supply voltage typ. mi n. 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temprature ( o c) 140v 70v 0v figure 22. ir2183 vs. frequency (irfbc20), r gate =33 ? , v cc =15v
ir2183 ( 4 )( s ) & ( pbf ) 16 www.irf.com 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 70v 0v 140v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 23. ir2183 vs. frequency (irfbc30), r gate =22 ? , v cc =15v figure 24. ir2183 vs. frequency (irfbc40), r gate =15 ? , v cc =15v figure 25. ir2183 vs. frequency (irfpe50), r gate =10 ? , v cc =15v figure 26. ir21834 vs. frequency (irfbc20), r gate =33 ? , v cc =15v
ir2183(4 )( s ) & ( pbf ) www.irf.com 17 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 70v 0v 14 0 v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 27. ir21834 vs. frequency (irfbc30), r gate =22 ? , v cc =15v figure 28. ir21834 vs. frequency (irfbc40), r gate =15 ? , v cc =15v figure 29. ir21834 vs. frequency (irfpe50), r g ate =10 ? , v cc =15v figure 30. ir2183s vs. frequency (irfbc20), r gate =33 ? , v cc =15v
ir2183 ( 4 )( s ) & ( pbf ) 18 www.irf.com 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 0v 140v 70v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) tempreture ( o c) 14 0 v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 31. ir2183s vs. frequency (irfbc30), r gate =22 ? , v cc =15v figure 32. ir2183s vs. frequency (irfbc40), r gate =15 ? , v cc =15v figure 33. ir2183s vs. frequency (irfpe50), r gate =10 ? , v cc =15v figure 34. ir21834s vs. frequency (irfbc20), r gate =33 ? , v cc =15v
ir2183(4 )( s ) & ( pbf ) www.irf.com 19 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v 20 40 60 80 100 120 140 1 10 100 1000 frequency (khz) temperature ( o c) 140v 70v 0v figure 35. ir21834s vs. frequency (irfbc30), r gate =22 ? , v cc =15v fi gure 36. i r 21834s vs . frequency (i rfbc 40), r gate =15 ? , v cc =15v fi gure 37. i r 21834s vs. frequency (i rfpe50), r gate =10 ? , v cc =15v
ir2183 ( 4 )( s ) & ( pbf ) 20 www.irf.com 01-6014 01-3003 01 (ms-001ab) 8-lead pdip 01-6027 01-0021 11 (ms-012aa) 8-lead soic 87 5 65 d b e a e 6x h 0.25 [.010] a 6 4 3 12 4. outline conforms to jedec outline ms-012aa. notes: 1. dimensioning & toleranc ing per asme y14.5m-1994. 2. controlling dimension: millimeter 3. dimensions are shown in millimeters [inches]. 7 k x 45 8x l 8x c y footprint 8x 0.72 [.028] 6.46 [.255] 3x 1.27 [.050] 8x 1.78 [.070] 5 dimension does not include mold protrusions. 6 dimension does not include mold protrusions. mold protrusions no t to exc eed 0.25 [.010]. 7 dimension is the length of lead for soldering to a substrate. mold protrusions no t to exc eed 0.15 [.006]. 0.25 [.010] cab e1 a a1 8x b c 0.10 [.004] e1 d e y b a a1 h k l .189 .1497 0 .013 .050 basic .0532 .0040 .2284 .0099 .016 .1968 .1574 8 .020 .0688 .0098 .2440 .0196 .050 4.80 3.80 0.33 1.35 0.10 5.80 0.25 0.40 0 1.27 basic 5.00 4.00 0.51 1.75 0.25 6.20 0.50 1.27 min max millimeters in c h e s min max dim 8 e c .0075 .0098 0.19 0.25 .025 basic 0.635 basic case outlines
ir2183(4 )( s ) & ( pbf ) www.irf.com 21 01-6010 01-3002 03 (ms-001ac) 14-lead pdip 01-6019 01-3063 00 (ms-012ab) 14-lead soic (narrow body)
ir2183 ( 4 )( s ) & ( pbf ) 22 www.irf.com basic part (non-lead free) 8-lead pdip ir2183 order ir2183 8-lead soic ir2183s order ir2183s 14-lead pdip ir21834 order ir21834 14-lead soic ir21834 order ir21834s leadfree part 8-lead pdip ir2183 order ir2183pbf 8-lead soic ir2183s order ir2183spbf 14-lead pdip ir21834 order ir21834pbf 14-lead soic ir21834 order ir21834spbf order information leadfree part marking information lead free released non-lead free released part number date code irxxxxxx yww? ?xxxx pin 1 identifier ir logo lot code (prod mode - 4 digit spn code) assembly site code per scop 200-002 p ? marking code thisproduct has been designed and qualified for the industrial market. qualification standards can be found on ir?s web site http://www.irf.com data and specifications subject to change without notice. ir world headquarters: 233 kansas st., el segundo, california 90245 tel: (310) 252-7105 4/4/2006


▲Up To Search▲   

 
Price & Availability of IR21834STR

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X